Bounded design

If you wake up a Domain Driven Design fan and scream the word “Bounded” the answer will be immediate and always the same: “Context”. It’s funny that this word is having so much trouble in leaving DDD context. I’d like to encourage you for broadening it a little bit, to a design, architecture space.

Reality strikes back

It’s quite interesting that often, when we hit a limitation of a service of any kind, the first reaction is negative. Probably you heard statements similar to these:

  • Why did they set the value at this level?
  • I want to be able to put a transaction on top of anything
  • I don’t need to change my design. It’s their fault that the created a service that sucks

I’m not writing about malicious providers claiming, that they do something when they don’t. I’m talking about a well described limitations that you can find in a documentation of a tool that you’re using. You can try to kick the wall, but still, the limitation will be  there. The better question to ask is why?

Limit to profit

Every limitation that you put in your service provides more space for designing it. Let’s take into consideration a supported type of data for a custom database. If all values and keys could be only of type int (4 bytes), then I would not need to care about variable lengths of buffers used for storing them! Every pair of a key and a value would be written on 8 bytes! And this is memory aligned as well! And this and that. Let’s see another example.

Often, when using cloud databases there’s a notion of a partition or a shard. You are promised to have some kind of transactionality within one partition, but you can’t use one transaction across partitions. Again, you may raise all the blaming questions, or think about partition as a unit of a scalability. Imagine that you’d have to store all the data of a single database on one machine. That’s at least highly inefficient. Now think. You create partitions from the very beginning. They can be moved to other machines, as all the data of one partition resides on one machine (this is implication, so multiple partitions can reside on the same machine). This could be a game changer, especially, if you’re writing a cloud service like Azure Storage Tables.


You can see the pattern now. Behind majority of these limitations, are some design decisions. They were made to make a service work. Of course there are probably some sloppy ones, but still, whenever you see a limitation like this, think about it. Then, design your solution accordingly.

Pearls: the protocol for monitoring NServiceBus

It’s time for another pearl of design, speed and beauty at the same time. Today, I’m bringing you a protocol used by NServiceBus to efficiently report its measurements to a monitoring endpoint. It’s really cool. Take a look! Not that I co-authored it or something… 😉

Measure everything

One of the assumptions behind monitoring NServiceBus was ability to measure everything. By everything, I mean a few values like Processing Time, Criticial Time, etc. This, multiplied by a number of messages an endpoint processes can easily add up. Of course, if your endpoints processes 1 or 2 messages per second, the way you serialize data won’t make a difference. Now, imagine processing 1000 messages a sec. How would you record and report 1000 messages every single second? Do you think that “just use JSON” would work in this case? Nope, it would not.

How to report

NServiceBus is all about messages, and being given, that the messaging infrastructure is already in place, using messages for reporting messaging performance was the easiest choice. Yes, it gets a bit meta (sending messages about messages) but this was also the easiest to use for clients. As I mentioned, everything was already in place.


As you can imagine, a custom protocol for custom needs like this could help. There were several items that needed to be sent for every item being reported:

  1. the reporting time
  2. the value of a metric (depending on a metrics type it can have a different meaning)
  3. the message type

This triple, enables a lot of aggregations and enables dealing with out of order messages (temporal ordering) if needed. How to report these three values. Let’s consider first a dummy approach and estimate needed sizes:

  1. the reporting time – DateTime (8 bytes)
  2. the value of a metric – long (8 bytes)
  3. the message type (N bytes using UTF8 encoding)

You can see that beside 16 bytes, we’re paying a huge tax for sending the message type over and over again. Sending it 1000 times a second does not make sense, does it? What we could do is to send every message type once per message and assign an identifier to reuse it in a single message. This would prefix every message with a dictionary of message types used in the specific message Dictionary<string,int> and leave the tuple in the following shape:

  1. the reporting time – DateTime (8 bytes)
  2. the value of a metric – long (8 bytes)
  3. the message type id – int (4 bytes)

20 bytes for a single measurement is not a big number. Can we do better? You bet!

As measurements are done in a temporal proximity, the difference between reporting times won’t be that big. If we extracted the minimal date to the header, we could just send difference between the starting date and a date for the entry. This would make the tuple look like:

  1. the reporting time difference – int (4 bytes)
  2. the value of a metric – long (8 bytes)
  3. the message type – int (4 bytes)

16 bytes per measurement? Even if we’re recording 1000 messages a sec this gives just 16kb. It’s not that big.

Final protocol

The final protocol consists of:

  1. the prefix
    1. the minimum date for all the entries in a message (8 bytes)
    2. the dictionary of message types mapped to ints (variable length)
  2. the array of
    1. tuples each having
      1. the reporting time difference – int (4 bytes)
      2. the value of a metric – long (8 bytes)
      3. the message type – int (4 bytes)

With these schema being written binary, we can measure everything.


Writing measurements is fun. One part, not mentioned here, is doing it in a thread/task friendly manner. The other, even better, is to design protocols that can deal with the flood of values, and won’t break because someone pushed a pedal to the metal.




Pearls: putting EventStore in reverse

Pearls of design, beautiful patterns, efficient approaches. After covering Jil and its extremely efficient serialization of primitives it’s time to put things in reverse. By things, in this case, I mean EventStore, the event centric database that I already presented once. Now, it’s time to visit its ability to move back in time and traverse its log in the opposite direction.

Log all the things

EventStore uses a traditional log mechanism for storing its data in a transactional way. The mechanism can be described as a never-ending log file, that has new data appended at the end of itself. Of course different databases implement the “never ending file” in different ways, still, the logical approach is the same: whenever data are updated/inserted we log these operations to a file.

Appending operations has an interesting property. Whenever other components break, whenever hardware restarts, the log is the single source of truth that can be traversed and reapplied to all the components that didn’t catch up before failure. How to make sure that a specific piece of log was written properly though? That the data what we stored, are the data that survived the crush?

Make it twice

Below you can see a piece of code that is extracted from the writer:

We can see the following:

  1. there’s a buffer, which is a regular MemoryStream
  2. its position is set to 4, leaving 4 initial bytes empty
  3. the whole record is written to the buffer
  4. its length is calculated
  5. the length is written at the beginning and and at the end

This looks like storing 4 bytes too much. On the other hand, it’s a simple check mechanism, used internally by EventStore to check the consistency of the log. If these two values do not match, something is seriously wrong in chunk (an original comment from the code). Could the same length written twice be used for something more?

Put it in reverse Terry!

EventStore has additional indexing capabilities, that allow it to move back and forth pretty fast. What if we had none and still wanted to travel through the log?

Consider the following scenario. You use a log approach for you service. Then, for any reason you need to read 10th entry from the end. Having a regular log, you’d need to do the following:

  1. Read the log from the beginning counting items till it’s done. Sorry, there’s no other point and it’s painfully blunt method for doing it.

If we have the length written twice though, what you can do is to read 4 last bytes of the log, it will always be length and move backward to the previous entry. The number of bytes to move backward?

var moveBackBy = length + 2 * sizeof(int)

as two lengths are written on a single integer.

With this, you don’t need any additional index. The log itself is sufficient enough to move forward and backward.


Data structures and data format nowadays are not popular topics. As you saw above, adding just one integer added a lot of capabilities to a simple append only file. Next time, before “just using” another data store, think about your data and the format you’re gonna use. It can make a real difference.


Pearls: Jil, serialization of primitives

The last pearl of design that I covered was an implementation for the discriminated union in the probuf-net library. Now, it’s time to move to an area that is less esoteric in terms of the format, but still intriguing in terms of performance. Time to take a look at the fastest JSON serializer available for .NET, Jil.

Is it fast?

Jil is crazy fast. As always, the best way to do something fast, is to skip some steps. You can think about skipping doing some computations, to effectively lower the load for the CPU. When speaking about programming in .NET, one additional thing to skip are allocations. And when speaking about allocations and JSON, the one that should come to our minds are strings. I don’t mean strings per se, but object that are transformed into them before writing to the actual input.

A unique case of GUID

GUID in .NET (or Guid) stands for Globally Unique Identifier. It’s a structure, 16 bytes long, providing a unique identity generator (let’s not deal with comb guids and other types for now). It’s frequently used whenever its the client responsibility to generate an id. It’s also cheap, as you don’t need to call the third party to get a globally unique id.

Let’s take a look how Guid is serialized by another library for .NET, probably, the most popular one, JSON.NET

As you can see above (and you can see it on GitHub), JSON.NET first calls .ToString, allocating  32 characters in a form of a string, just to pass it to the TextWriter instance. Yes, this instance will end its life shortly after writing it to the writer, but still, it will be allocated. What could be done better?

Jil to the rescue

We’ve got a text writer. If we had an additional buffer of char[] we could write characters from Guid to the buffer and then pass it to the text writer. Unfortunately, Guid does not provide a method to write its output to the buffer. Jil, provides one instead. It has an additional Guid structure that enables to access internal fields’ values of Guid. With this and a buffer, we can write to a text writer without allocating an actual string. The code is much to big to paste it in here. Probably it must be big to be that fast;-) Just follow this link to see the selected lines.


The mentioned optimization for Guid type is just one of many, that you can find in the awesome Jil library. As always, do not allocate, is one of the top commandments when talking about performance.

Pearls: the protobuf’s discriminated union

Google Protocol Buffers is a proven protocol for serializing data efficiently. It has a wide adoption, enabling serialization for almost every platform, making the data easy to exchange between platforms. To store its schema, you can use .proto files, that enable describing messages in a platform agnostic format. You can see an example below:

message SearchRequest {
  string query = 1;
  int32 page_number = 2;
  int32 result_per_page = 3;

One of

Sometimes you want to define a message that will have only one of its fields initialized. This can be useful when sending a message providing a wrap around multiple types or in any other case that requires it. Take a look at the example, providing a wrap around three messages of the following types: MessageA, MessageB and MessageC.

message Wrapper {
  oneof OnlyOneOf {
    MessageA a = 1;
    MessageB b = 2;
    MessageC c = 3;  

Protocol buffers use a tag value to store any field. First, the tag (1, 2, 3 above) and the type of the field is stored, next, the value is written. In the following case, where only one field is assigned, it would write its tag, type and value. Do we need to create a class that will contain all the fields? Do we need to waste this space for storing fields?

Protobuf-net Discriminated Union

To fix this wasteful generation, protobuf-net, a library build by Marc Gravell, added Discriminated Union types that is capable of addressing it. Let’s just take a look at the first of them.

public struct DiscriminatedUnionObject
  private readonly int _discriminator;

 // The value typed as Object
 public readonly object Object;

 // Indicates whether the specified discriminator is assigned
 public bool Is(int discriminator) => _discriminator == ~discriminator;

 // Create a new discriminated union value
 public DiscriminatedUnionObject(int discriminator, object value)
  _discriminator = ~discriminator; // avoids issues with default value / 0
  Object = value;

Let’s walk through all the design choices that have been made here:

  1. DiscriminatedUnionObject is a struct. It means, that if a class have a field of this type, it will be stored in the object, without additional allocations (you can think of it as inlining the structure, creating a “fat object”)
  2. It has only one field for storing the value Object. (no matter which type is it).
  3. It has only one field, called _discriminator to store the tag of the field.

If you generated the Wrapper class, it’d have only one field, of the DiscriminatedUnionObject type. Once a message of a specified type is set, the discriminator and the value would be written in the union. Simple, and efficient.

Summing up

Mapping a generic idea, like a discriminated union, into a platform or a language isn’t simple. Again, once it’s made in an elegant and an efficient way, I truly believe that it’s worth to be named as a pearl.

The batch is dead, long live the smart batch

It lurks in the night. It consumes all the energy. It lasts much too long. If you experienced it, you know it’s unforgettable. If you’re lucky and you did not meet it, you probably heard these stories from your friends. Yes, I’m talking about the batch job.

The old batch

This ultimate tool of terror was dreading us for much too long. Statements like “let’s wait till tomorrow” or “I think that the job didn’t run” were quite popular a few years back. Fortunately for us, with the new waves of reactive programming, serverless and good old-fashioned queues, it’s becoming thing of the past. We’re in a very happy position being able to process events, messages, items as soon as they come into our system. Sometimes a temporary spike can be amortized by a queue. And it works. Until it’s not.

When working on processing 2 billion events per day with Azure functions, I deliberately started with the assumption of 1-1 mapping, where one event was mapped as one message. This didn’t go well (as planned). Processing 2 billion items can cost you a lot, even, if you run this processing on-premises, that are frequently treated as “free lunch”. The solution was easy and required going back to the original meaning of the batch, which is a group, a pack. The very same solution that can be seen in so many modern approaches. It was smart batching.

The smart batch

If you think about regular batching, it’s unbounded. There’s no limit on the size of the batch. It must be processed as a whole. Next day, another one will arrive. The smart batching is different. It’s meant to batch a few items in a pack, just to amortize different costs of:

  1. storage (accessing store once)
  2. transport (sending one package rather than 10; I’m aware of the Nagle’s algorithm)
  3. serialization (serializing an array once)

To use it you need:

  1. a buffer (potentially reusable)
  2. a timer
  3. potentially, an external trigger

It works in the following way. The buffer is a concurrent-friendly structure that allows appending new items by, potentially, multiple writers. Once

  1. the buffer is full or
  2. the timer fires or
  3. the external trigger fires

all the items that are in the buffer will be sent to the other party. This ensures that the flushing has:

  1. a bounded size (the size of the buffer)
  2. a bounded time of waiting for ack (the timer’s timeout)

With this approach, used actually by so many libraries and frameworks, one could easily overcome many performance related issues. It amortizes all the mentioned costs above, paying a bit higher tax, but only once. Not for every single item.

Outsmart your costs

The smart batch pattern enables you to cut lots of costs. For cloud deployments, doing less IO requests means less money spent on the storage. It works miracles for the throughput as well, no wonder that some cloud vendors allow you to obtain messages in batches etc. It’s just better.

Next time when you think about a batch, please, do it,  but in a smart way.

Different forms of drag

Have you heard about this new library called ABC? If not, you don’t know what you’re missing! It enables your app to do all these things! I’ll send you the links to tutorial so that you can become a fan as well. Have I tested it thoroughly? Yeah, I clicked through demo. And got it working on my dev machine. What? What do you mean by handling a moderate or high traffic? I don’t get it. I’m telling you, that I was able to spin an app within a few minutes! It was so easy!

Drag (physics) is a very interesting phenomenon. It’s a resistance of a fluid that behaves much different from regular, dry friction. Instead of being a stable force, the faster an object moves, the stronger the drag is. Let’s take a look what kind of drags we could find in modern IT world.


Performance drag

The library you chose works on your dev machine. Will it work for 10 concurrent users? Will it work for another 100 or 1000? Or, let me rephrase the question: how much of RAM and CPU it will consume? 10% of your application resources or maybe 50%? A simple choice of a library is not that simple at all. Sometimes your business have money to just spin up 10 more VMs in a cloud or pay 10x more because you prefer JSON over everything, sometimes it does not. Choose wisely and use resources properly.

Technical drag

You probably have heard about the technical debt. With every shortcut you make, just to deliver it this week, not the next one, there’s a non zero chance of introducing parts of your solution that aren’t a perfect fit. Moreover, in a month or two, they can slow you down, because the postponed issues will need to be solved eventually. Recently, instead of debt it was proposed to use the word drag. You move on with a debt, but moving with a drag, for sure will make you slower.

Environment drag

So you chose your library wisely. You know that it will consume a specific amount resources. But you know that it has a configuration parameter, that allows you to cut off some data processing or RAM usage or data storage costs. One example that automatically comes to my mind are logging libraries. You can use the logging level as a threshold for storing data or not. How many times these levels are changed only to store less data on these poor productions servers? When this happens, scenario for a failure is simple:

  1. cut down the data
  2. an error happens
  3. no traces beside the final catch clause
  4. changing the logging level for one hour
  5. begging asking users to trust us again and click one more time

This and similar stories heard tooooo many times.


There are different forms of a drag. None of them is pleasant. When choosing approaches, libraries, tools, choose wisely. Don’t let them drag you.