This post has been imported from my previous blog. I did my best to parse XML properly, but it might have some errors.
If you find one, send a Pull Request.
I thought for a while about presenting a few projects which are in my opinion real pearls. Let’s start with the EventStore and one in one of its aspects: the transaction log. If you’re not familiar with this project, EventStore is a stream database providing complex event processing. It’s oriented around streams of events, which can be easily aggregated or repartitioned with projections. Based on ever appended streams and projections chasing the streams one can build a truly powerful logic around processing events. One of the interesting aspects of EventStore is its storage engine. You can find a bit of description in here. ES does not abstract a storage away, the storage is a built-in part of the database itself. Let’s take a look at its parts before discussing its further:
One the building blocks of ES is SEDA architecture - the communication within db is based on publishing and consuming messages, which one can notice reviewing StorageWriterService. The service subscribes to multiple messages, mentioned in implementations of the IHandle interface. The arising question is how often does the service flushed it’s messages to disk. One can notice, that method EnqueueMessage beside enqueuing incoming messages counts ones marked by interface IFlushableMessage. What is it for?
Each Handle method call Flush at its very end. Additionally, as the EnqueueMessage increases the counter of messages requiring flush, each Handle method decreases the counter when it handles a flushable message. This brings us to the conclusion that the mentioned counter is equal 0 iff there are no more flushable messages in the queue.
Once the Flush is called a condition is checked whether:
This provides a very powerful batching behavior. Under stress, the flush-to-be counter will be constantly greater than 0, providing flushing every given period of time. Under less stress, with no more flushables in the queue, ES will flush every message which needs to flush the log file.
The final part of the processing is the acknowledgement part. The client should be informed about persisting a transaction to disk. I spent a bit of time (with help of Greg Young and James Nugent) of chasing the place where the ack is generated. It does not happen in the StorageWriterService. What’s responsible for considering the message written then? Here comes the second part of the solution, the StorageChaser. In a dedicated thread, in an infinite loop, a method ChaserIteration is called. The method tries to read a next record from a chunk of unmanaged memory, that was ensured to be flushed by the StorageWriterService. Once the chaser finds CommitRecord, written when a transaction is commited, it acks the client by publishing the StorageMessage.CommitAck in ProcessCommitRecord method. The message will be translated to a client message, confirming the commit and sent back to the client.
One cannot deny the beauty and simplicity of this solution. One component tries to flush as fast as possible, or batches a few messages if it cannot endure the pressure. Another one waits for the position to which a file is flushed to be increased. Once it changes, it reads the record (from the in-memory chunk matched with the file on disk) processes it and sends acks. Simple and powerful.